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Abstract—Matching media are located between wearable an-
tennas and the human body to enhance implant communications.
The selection of the matching medium is a complicated problem,
and there is yet no well-established approach. The simulations
are computationally expensive, and the theoretical work is
limited. Hence, this work proposes a novel approach by using
artificial neural networks for determining the effect of various
matching media. For this aim, a wearable repeater antenna,
human tissue blocks with varying relative permittivities, and
matching medium layer with varying relative permittivities and
thicknesses are utilized. Employing more than 200 simulated
designs, optimum matching medium designs are proposed, and
the matching medium concept has been shown to increase the
average transmitted power by 17.6%. Moreover, it is shown that
the trained neural network model can predict the test cases with
4.5% mean error and the computational cost has been decreased
by 91% compared to the empirical method.

Index Terms—Wearable repeater antenna, matching medium,
machine learning, artificial neural networks, implant communi-
cations.

I. INTRODUCTION

Wearable antennas have gained more attention over the
years for medical imaging [1], [2], diagnosis [3], treatment [4],
and health monitoring [5] as well as for personal use. Wearable
antenna design has its own challenges, and the main challenge
is its proximity to a highly lossy object, the human body [6].
Due to its high water content, the human body absorbs electro-
magnetic energy, making implant communications harder. Due
to the restrictions in transmit power of implant and wearable
antennas, it is critical to minimize the losses associated with
the in-body link. These losses are related to reflection, near-
field loss, and path loss[7].

Matching medium, also referred to as bolus layer in the
literature [4], aims to balance two types of these losses:
Reflection and near-field loss. It spans most of the near field
and shows transitional characteristics by preventing the abrupt
change of electromagnetic properties from the antenna to the
body. This idea has been applied for various cases, however,
the matching media providing the best wave penetration are
proposed without much explanation about its selection [8],
[9]. An ultra-wideband spiral antenna is proposed for in-body
communications and embedding the antenna in a matching
medium having εr = 27 is suggested [8]. In [9], a foam spacer
is placed between the antenna and the phantom to increase the
bandwidth.

There are a few studies focused on optimizing the matching
medium. In [10], internal and external matching media for

implanted antennas are investigated analytically, and it is
proposed that the use of an external matching medium can
decrease the power loss up to 7.9 dB. According to [11],
when the matching medium is assumed to be of infinite
size, the recommended relative permittivity for the matching
medium should be lower than 20. However, [1] concentrates
on matching, and recommends using a matching medium with
a relative permittivity value close to the underlying tissue’s.
Many assumptions have to be made for theoretical work [12],
and simulations take a myriad of computational power and
time [13]. To the best of the authors’ knowledge, there is yet no
rule of thumb for optimum matching medium selection. This
work brings a novel perspective by utilizing artificial neural
networks (ANN) to determine the optimum matching medium.

Machine learning, of which popularity has been increasing
rapidly, is being used for a variety of applications, and antenna
design is not an exception. Machine learning and related
techniques are advantageous thanks to their high speed [14]. In
[15], an ANN that models reflectarray elementary components
is proposed to optimize the design process, and this makes dif-
ferent phases of the antenna design numerically more efficient.
Reference [16] uses an ANN to acquire the design values
for optimizing the bandwidth of two bands of a monopole
antenna, together with the other machine learning methods. As
the new machine learning based antenna design techniques are
established [17], [18], ANNs are being employed not only for
antenna design [19], [20], but also for the inverse scattering
problem, direction of arrival estimation and remote sensing
[14]. It is suitable to use an ANN based approach to optimize
the matching medium design, as the problem is well-defined,
and its dependent and independent variables can be easily
determined.

As pointed out in [19], the most significant problem of
the machine learning applications in this field is building
a data set that is sufficient to train the model. Hence, this
work includes the steps for building the data set. The setup
consists of a wearable repeater antenna conformed to body,
an implantable antenna, and a matching medium layer, as
seen in Fig. 1. The matching medium conductivity is taken as
zero, and its relative permittivity and thickness are selected as
independent variables. For the human tissue, namely the target
tissue, relative permittivity is varied to represent different
tissues, while all the other design variables are held constant.
A measure of the power transmitted to the implanted antenna,
which is in 1 cm depth, is calculated using Ansys High-
Frequency Structure Simulator (HFSS) [21], along with the



Fig. 1. Antenna conformed to body.

Fig. 2. The design of the cavity-backed slot antenna with the matching
medium and target tissue.

S parameter characteristics in the 2.4 GHz ISM band. The
trained model can replace the simulation tool for antenna
design exploration and optimization in the established input
space. Section II introduces the simulation setup, explains
the data collection process, and demonstrates the simulation
results. Section III establishes an ANN based approach, and
illustrates the results. Section IV interprets the effect of match-
ing medium, discussing the proposed approach. The paper
concludes in Section V.

II. EMPIRICAL WORK

A. Simulation Setup

Consider an HFSS design consisting of a cavity-backed
slot antenna, a block of biological tissue representing the
human body, and a matching medium between them, to be
investigated later in this work, as depicted in Fig. 2. An air
gap of 1 mm thickness is inserted between the antenna and
the matching medium for better matching. The cavity-backed
slot antenna is used as a wearable repeater establishing an in-
body link with an implanted antenna. The implanted antenna
is assumed to cover a square surface of area 4 cm2 in 1 cm
depth.

Design variables can be classified into two categories:
independent variables and control variables. The ranges of the
independent variables can be seen in Table I. For εt = [20
40], εmm is swept with unit steps, and these samples are used
for training and validation of the ANN. Remaining samples,

TABLE I
VALUES OF INDEPENDENT VARIABLES

Features Range

Relative permittivity of the matching medium (εmm) [1:εt]
Thickness of the matching medium (d) [9 14 19] mm
Relative permittivity of the target tissue (εt) [20 30 40 50]

TABLE II
DIMENSIONS OF THE CAVITY-BACKED SLOT ANTENNA

Features Value

Feed offset 0.75 cm
Width of target tissue (Wt) 15 cm
Length of target tissue (Lt) 20 cm
Slot width (Wslot) 6.3 cm
Slot length (Lslot) 0.05 cm
Substrate thickness (tsub) 1 mm
Substrate width (Wsub) 7.5 cm
Substrate length (Lsub) 10 cm
Microstrip offset 2.3 cm
Microstrip width (Wustrip) 2.37 mm

which have εt = [30 50], are used for testing and their εmm

is swept with five unit steps.
Control variables are kept constant and include the con-

ductivity of the target tissue (σt), which is 1.71 S/m, and
the dimensions of the cavity-backed slot antenna, as seen in
Table II. Throughout the simulations, the antenna model is
kept unvaried. Hence, the results illustrate only the effect of
the matching medium and the target tissue.

B. Automated Data Collection Process

After the simulation setups are determined, a matrix con-
taining the design features is constructed in MATLAB envi-
ronment. Then, parametric sweeps are automatically generated
using a MATLAB script that embeds elements of the matrix
in the HFSS script template.

Solution setup is configured before all optimetrics are
analyzed. Two frequency sweeps are created, namely Far Field
Sweep (FF Sweep) and S-parameter Sweep (SParam Sweep),
to get the desired outputs. FF Sweep is set to calculate the
average power (Pavg) on the implant surface at 2.4 GHz. In
addition, S-parameter sweep is set to extract values of |S11|
at the resonant frequency (fr) and at 2.4 GHz.

This time, after completion of simulations, MATLAB
scripts are again used to generate data extraction scripts.
Generated script extracts Pavg on implant surface by
evaluating a fields calculator expression as follows:
/(Integrate(Surface(Rectangle1), Mag(Poynting)),
Integrate(Surface(Rectangle1), 1)) Then, extracted output
columns are appended to starting matrix in order to be used
as the data set for the deep learning algorithm.

C. Results

The simulation results are examined, and optimum matching
medium relative permittivities according to Pavg for various εt



TABLE III
THE EMPIRICALLY CALCULATED OPTIMUM MATCHING MEDIUM

RELATIVE PERMITTIVITIES FOR CHANGING εt AND d VALUES

εt εmm d Pavg |S11| at fr |S11| at

(mm) (W/m2) 2.4 GHz (dB) (GHz) fr (dB)

20 16 9 1.52 -19.03 2.41 -19.10

20 11 14 1.26 -21.56 2.4 -21.56

20 20 19 1.05 -14.37 2.46 -16.01

30 20 9 1.92 -15.08 2.38 -15.16

30 10 14 1.56 -22.78 2.44 -32.78

30 25 19 1.45 -13.44 2.41 -13.44

40 19 9 2.37 -19.04 2.41 -19.14

40 13 14 2.09 -17.83 2.35 -19.53

40 27 19 1.69 -12.90 2.4 -12.90

50 20 9 2.76 -19.76 2.4 -19.76

50 15 14 2.29 -12.36 2.3 -14.78

50 30 19 1.91 -11.94 2.36 -12.30

and d values can be found in Table III. The resonant frequency
of these designs are in the range of 2.35-2.46 GHz, and the
|S11| values are in the desired range. It should be noted that
results given in Table III for εt = [30 50] might not be the
optimum values, as εmm is swept with five units instead of
one unit. This issue is studied in Section III.

Comparing the cases with different d values, the optimum
choice is found to be d = 9 mm, since it shows higher Pavg

and better matching in all optimum designs. In addition to that,
thinner matching media are favorable for wearable applications
considering user acceptance.

III. NEURAL NETWORK BASED APPROACH

A. Data Set

The data set is divided into three parts as training, validation
and test sets. As mentioned in Section II, the training and
validation sets consist of data samples with εt = [20 40],
whereas test set consists of data samples having εt = [30 50].
Training and validation sets are split randomly such that ratio
between them is 4:1. The number of samples for training,
validation and test sets are 134, 34, and 47, respectively.

Neural network has three input variables (εmm, d, and εt)
and four output variables. The output variables are Pavg and
|S11| at 2.4 GHz together with fr and |S11| at fr. All input and
output variables are normalized (i.e. divided by the maximum
absolute values) for faster training.

B. Neural Network Structure

The neural network is realized using Keras and consists
of an input layer, nine hidden layers, a dropout layer, and
an output layer, as seen in Fig. 3. Each of the hidden layers
has nine neurons, while the output layer has four neurons. For
regularization, the dropout rate is chosen to be 0.1. That means
each neuron has a dropout chance of 10% in each epoch of
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Fig. 3. ANN diagram for matching medium optimization.

the training. A maximum norm constraint of 3 is utilized for
each neuron.

Adam optimization and mean absolute percentage error
(MAPE) loss function are selected. Keras default settings are
used for both Adam optimization and MAPE calculation. In
addition to MAPE, Mean Absolute Error (MAE) is monitored
for training and validation sets.

C. Training

For training, the batch size is chosen as 32, and it corre-
sponds to 5 batches per epoch. The model is trained for ten
thousand epochs, and the best performing model in terms of
MAE and MAPE on the validation set is restored at the end
of the training with an early stopping function. By using this
technique, the end model has been trained for 9707 epochs.

D. Results

TABLE IV
MAPE AND STD VALUES FOR THE ANN MODEL IN TERMS OF

DIFFERENT DATA CATEGORIES

Training V alidation εt = 30 εt = 50

M
A

PE

ST
D

M
A

PE

ST
D

M
A

PE

ST
D

M
A

PE

ST
D

d = 9mm

Pavg 2.331 1.52 1.978 1.35 1.569 1.68 7.126 2.81
S2.4
11 3.196 2.16 2.980 1.55 5.033 2.55 5.695 3.96
fr 0.691 0.47 0.554 0.44 0.739 0.62 1.161 0.95

Sfr
11 3.940 4.64 4.758 6.49 2.552 2.38 6.637 4.81
d = 14mm

Pavg 2.388 1.71 1.665 1.43 2.612 1.24 4.958 3.5
S2.4
11 3.502 5.29 3.475 3.82 5.480 2.77 11.117 10.68
fr 0.860 0.75 0.853 0.66 0.752 0.92 1.834 1.41

Sfr
11 3.909 7.29 2.228 1.59 3.834 3.16 5.645 4.91
d = 19mm

Pavg 3.052 3.69 3.707 5.73 5.778 5.77 7.403 4.64
S2.4
11 3.362 4.00 2.381 1.57 4.191 3.83 4.794 5.59
fr 1.072 1.19 1.108 0.77 1.628 1.58 1.994 1.81

Sfr
11 3.355 5.32 2.526 1.84 2.823 2.99 6.166 3.55



Fig. 4. Comparison of Pavg between Predictions and Simulation Results

The predictions for the outputs are obtained using the
trained model. MAPE is calculated and categorized by εt and
d values as seen in Table IV. The standard deviation (STD) of
the absolute percentage errors for the samples is also provided.
The overall MAPE values for the training, validation, and test
sets are 2.6377, 2.3053, and 4.5048, respectively. It can be
seen that all MAPE values are below 7.4%, except for the
|S11| at 2.4 GHz of the εt = 50 and d=14 mm. This relatively
high MAPE value can be compensated for by looking at other
two outputs, fr and |S11| at fr, which have lower MAPE.

In Fig. 4, Pavg of all the test set samples can be seen. The
simulated and predicted values are given side by side for easy
comparison. The optimum εmm values for εt = [30 50] and d
= [9 14 19] mm can be read from Fig. 4.

For the input space overlapping the test set, the predictions
are obtained with steps of one unit, and the optimum matching
medium predictions for each case are provided in Table V.
Then, simulations for these optimum designs are run using
HFSS, and simulation results are also found in Table V.

When Table III and Table V are viewed together, it is
obvious that the predictions offer a refinement on the optimum
designs except for two cases. The optimum design prediction
for εt = 50, d = 9 mm stayed the same as in the simulation
results. For the case having εt = 30 and d = 19 mm, the
optimum is falsely predicted with 1.4% decrease in the Pavg

compared to the previous results. Even if the |S11| predictions
are not exactly true, all of them are in the desired range.
Despite the exceptional errors, the ANN based approach seems
promising considering the time needed for the empirical study.

TABLE V
COMPARISON OF BEST ANN PREDICTIONS AND THEIR HFSS

SIMULATION COUNTERPARTS FOR THE TEST SET

εt εmm d Pavg |S11| at fr |S11| at

(mm) (W/m2) 2.4 GHz (dB) (GHz) fr (dB)

ANN Predictions

30 17 9 1.96 -18.44 2.41 -19.67

30 12 14 1.73 -18.54 2.36 -19.57

30 27 19 1.62 -12.10 2.43 -12.48

50 20 9 2.46 -18.64 2.39 -17.98

50 13 14 2.26 -21.35 2.37 -23.16

50 28 19 1.73 -12.56 2.43 -12.39

Simulation Results

30 17 9 1.97 -19.76 2.40 -19.76

30 12 14 1.70 -12.04 2.37 -12.17

30 27 19 1.43 -13.29 2.39 -13.35

50 20 9 2.76 -20.44 2.38 -21.00

50 13 14 2.45 -18.08 2.35 -22.49

50 28 19 1.93 -19.27 2.43 -19.91

TABLE VI
SIMULATION RESULTS OF THE DESIGNS WITH ONLY 1 MM AIR LAYER

εt d Pavg |S11| at fr |S11| at

(mm) (W/m2) 2.4 GHz (dB) (GHz) fr (dB)

20 0 1.35 -9.72 2.52 -10.87

30 0 1.73 -9.38 2.49 -9.91

40 0 2.01 -8.89 2.47 -9.17

50 0 2.19 -8.27 2.48 -8.60

IV. DISCUSSION

In the data set used to train the model, the distances between
the antenna and the target tissue vary as 1, 1.5, and 2 cm,
including a 1 mm air layer. For the cases corresponding to
these thicknesses and targeting different tissues, the matching
medium was replaced with the air layer of the same thickness.
When the simulation results were averaged, it was noted that
the average received power was 0.1006 W/m2, |S11| was
0.9308 dB at 2.4 GHz, and there was a shift of more than
0.3 GHz at the resonance frequency. From these simulation
results, the effect of replacing the matching medium with the
air layer can be seen, provided that the distance of the antenna
to the target tissue remains constant.

Besides, the cases where the matching medium was elim-
inated (i.e. only 1 mm air layer is left between the antenna
and the tissue block) were simulated, and the results can be
seen in Table VI. From these results, it can be seen that Pavg

can be increased by introducing a matching medium without
significantly affecting the remaining outputs. Investigating
Table III and Table V, the best average power levels for each
εmm are achieved with d = 9 mm matching media. When those



designs are considered together with the designs in Table VI,
it can be calculated that the matching medium increases Pavg

by 17.6% on average. With these results, the importance of
matching medium optimization using ANNs is demonstrated.

The empirical method can be compared with the ANN ap-
proach in terms of the computational cost. With the empirical
method, around 2400 different models (for εt = [30:1:50], εmm

= [1:1:εt], and d = [9 14 19] mm) should be simulated to cover
the established input space. Considering that one simulation
takes 35 minutes in average, completing the simulations would
take around 1400 hours. Utilizing our ANN approach, the time
needed for covering the same space has been reduced to 125
hours, which correspond to 215 simulations. Training the ANN
and obtaining the predictions take less than 5 minutes. It can be
concluded that using ANN is an effective way of optimization.

V. CONCLUSION

Forming a reliable in-body link is a challenging task due to
the high relative permittivity and lossy nature of human tissues.
The wearable and the implantable antenna are subject to near-
field losses if faced directly with these tissues. Also, EM
waves transmitted by the wearable antenna undergo reflection
at the air-skin interface. The use of a matching medium can
minimize the reflection and the near-field losses associated
with the wearable antenna. Here, it has been shown that the
use of an optimum matching medium does not only maximize
the average received power by the implant antenna but also
stabilizes the response of the wearable antenna eliminating
detuning. The search for this optimum medium is achieved by
using an ANN, significantly lowering the computational cost.

In the future, the input space will be expanded by widening
the ranges of current independent variables and adding new
independent variables such as σt, depth of the implanted an-
tenna, and the frequency band. Various electrical and magnetic
antennas will be investigated. Since the problem will become
more complicated in those future large-scale studies, the role
and importance of ANN will be more preeminent than that of
this work.
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